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Dynamical structure factor for multiple-well configurations
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Fakultit fir Physik, Universitit Konstanz, D-7750 Konstanz, Federal Republic of Germany
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Abstract, Some general characteristics of the classical dynamic structure factor S{k, w)
corresponding to a one-dimensional multiple-well potential are analysed. A rich peak
structure is shown to emerge in the frequency domain in the case of unbounded potentials
that diverge not faster than x*. This effect is intensified at high temperatures or large values
of the momentum transfer.

Double-well potentials are commaonly used to model anharmonic motions in ferroelec-
trics [1, 2] and glasses [3, 4]. In glasses, for example, classical motion in double-well
potentials has been invoked to explain dynamical properties both at low and intermedi-
ate temperatures. We are interested here in the latter case, where the potential barrier
is passed by thermal activation and quantum mechanical effects are negligible. Since
inelastic neutron scattering is a powerful tool for the investigation of the dynamical
excitations of these systems, exact analytical calculations of the classical dynamic
structure factor S{k, w) for atomic motion in such potentials are of interest.

Itis somewhat surprising that, although the results for the simple harmonic oscillator
and for various types of diffusive motion are well known [5-8], there is only one
calculation of S{k, w} for Hamiltonian motion in a more general potential. This is the
work by Iwamatsu and Onodera (91, who treated the case of a quartic potential. They
used a generalization of the procedure devised by Matsubara [10] to evaluate the
dynamical susceptibility S(w} for a classical multiple-well one-dimensionai problem.
For the quantum case, on the other hand, there are various approximate calculations
[11, 12]. In particular, we should mention the vast literature associated with the impulse
approximation ([11] and see, for example, [13] and references therein).

In this paper we investigate some interesting, but hitherto unnoticed, properties of
the classical S(k, @), and show how they are related to the form of the potential V(x).
We will illustrate the discussion by presenting explicit results for a double-parabolic
potential.

We consider potentials having one or more minima and satisfying the condition
V(|x| > c0) = co. The constant-energy lines defined by the maxima of V(x) divide the
classically allowed region of the x, E plane into domains corresponding to different
types of periodic motion. The period in the jth domain is given by a single-valued
function T;(E). The corresponding frequency is W (E)= 27(T,(E)]"". As a con-
sequence of the periodicity, the contribution of every energy in each domain to the
intermediate scattering function can be expressed as a Fourier series; taking the Fourier
transform with respect to the time yields {9, 10]

o E,u
Stk @)=Z"'Y I J dE ¢ |F,,(E, k) T.(E)8(w —nW,(E)). (1)

in=—cJEy

Here E; and E,, are the lower and upper energy limits of the jth domain, 8 = (ks T) "',
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Z is the partition function

Eiu .
z=XL_ dE e ** T{(E) (2)
g il
and
T(E) i .
F:jn(-E, k) — [T:,(E)]—l j.n d' e:kx(:) e-—mW‘[E).’ (3)

where x(1) is the particle displacement at time { in the given potential. The coefficients
Fj.(E) are oscillating functions of the energy. The positions of the maxima in |F,,{ )|
are connected with the commensurability of the inverse of the transferred wavenumber
with the amplitude of the particle oscillation at energy E in domain j.

Each delta function in (1) defines a mapping between the internal variable E and
the external parameter w. The oscillations in |F,,(E}I* are then transferred to the w
domain. Therefore, the properties of S(k, w) will depend crucially on the form of the
function W;(E). Some general features of Wi (E) follow easily.

(a) If V(x)~ Alx|? when |x]-> <o, then

W,(E» E)~E"*

wAhere the index J indicates the uppermost energy domain, extending up to E = and
E, is the maximum height of the intervening barriers (for definiteness we can choose
the energy zero at the position of the lowest minimum). This result implies that W,
(E»)—0 for g <2, and that W,(E - c0) diverges for g>2. If g=2, W,(E) goes to
the natural oscillation frequency as E — oc. Similar considerations hold if we consider
the energy region in the neighbourhood of the potential minima. In figure 1 we have
sketched W(E) for symmetric double-well potentials having the three possible types
of asymptotic power-law behaviour (the index j will be omitted whenever there is no
possibility of confusion),

{a)

{h]

WiE}

Wy

fct

| 1

£

Figure 1. Sketch of the oscillation frequencies for symmetric double-well potentials. The
wells are assumed to have a parabolic bottom with a natural frequency w,. They are
separated by a smooth barrier of height Q. For large x| the potential is V(x)~[x[?, with
(a) g=2,(b) g=2and (¢} g=<2.
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(b) Each intervening barrier having a smooth maximum of height E, generates a
zero in W(E) at E = E,. If the maximum is a cusp, there is a discontinuous decrease
in W(E) at the energy of the cusp: when raising the energy beyond the cusp, the
period is suddenly increased because a larger region becomes available.

From observation (a) we conclude that, if g =<2, §(w — W;(E)) maps an infinite E
domain onto a finite w range. If g <2, w =0 is an accumulation point for the projected
oscillations in | F;,( E, k)|. In the case g =2 we may write V =3mwix? as |x| >, where
m is the mass of the particle. The oscillations then accumulate as w - w,. At low
temperatures the Boltzmann factor in (1) kills the high-energy contributions and the
oscillations in the dynamic structure factor are not visible, At higher temperatures, the
oscillations become detectable and a plot of S{k, w} as a function of w shows a structure
of resonances. The same phenomena are observed in the n > 1 bands. The bands will
in generai overlap, but the location of the densely peaked regions is shifted upwards
with increasing n. Consequently, the superposition of the contributions of the different
bands does not lead to a smoothening out of the peaks.

In the special case of a purely harmonic motion the whole energy range is mapped
onto the points @ = new, and the oscillations are undetectable. If ¢ > 2, as in the case
studied by Iwamatsu and Onodera [9], the infinite E domain is projected onto an
infinite w range. Consequently, there is not a strong compression of the oscillations
in the w range and no structure of resonances arises.

Assuming that V(x} is unbounded as | x| —» o, two impartant corollaries follow from
the preceding discussion. (i) If V(x)< A|x|* for all |x| larger than a certain constant
M, » =0 will be an accumulation point for the oscillations in S(k, w). (i) If V{x) > A|x/?
for all |x| larger than M, there will not be an accurnulation point for the oscillations.

From observation (b) it follows that more than one branch, i.e. more than one

uqlnn Af F mav santrihoute 0 ('fb Y Far n mivan .2 Tha Anmteibati Af tha varmanc
iU U ey LAY WULILLIUV WY LY Ly W) IV a4 pivvwil o, lll\' VUIILIIU“L[UIIB Ul [ 24V VGII.UU:

branches are weighted by the Boltzmann factor. This was already remarked in [9] for
the case of the two-well quartic potential.

Next we consider the dependence of 5(k, w) on k Suppose that A;(E) is the
amplitude of the motion with energy E in region j and that there is a maximum in

|Fi,(E)* when E and k are related by kA;{E)= a, a being a numerical constant. Since
.AJ(F\ i€ a non- degrgasxnu function of F an increaze in k will opnprnl]u mean that the
relation kA;(E) = « is fulfilled at a Iower energy. Thus increasing k w1]l likely pull the
oscillations of | F,,(E)|* towards lower energies and will make the resonances visible
at lower temperatures. The evolution of the position of the maxima in |F,(E}|* as a
function of k is casily visualized in the case of the simple harmonic oscillator, for
which F,(E)~J,[kA(E)], with J, being a Bessel function.

The 0<C ¢ <2 case is most simply exemplified by choosing V{(x) = «|x|. The integral
in (3) is easy to evaluate and S(k, @) can be expressed in terms of Fresnel functions.
We can then readily see the emergence of a rich peak structure at high T or k in the
low-|w| region. We will present explicit results in a future publication [14].

Let us now discuss a specific example of the g=2 case. Consider the double-
parabolic potential

V(x) = 3mas(lxl - )%, (4)
There is a single barrier of height Q = jmwg!* and the frequency is given by

[L20) E<Q

wol1+(2/ ) arcsin(Q/ E)' 7?1 E>Q. (5)

W(E)={
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The frequency W(E) jumps from w, to 3w, at E = Q and then grows monotonically,
approaching @ = w, as £ >,

The contribution S™(k, w} of the E < Q regions to the dynamic structure factor is
given by a superposition of delta function peaks:

) Q
“(kw)=@n/wZ) ¥ J dE e %7 [, [KA(E)]*8(w — nwo).  (6)

n=—w0 Jo

The intensity of the elastic peak decreases monotonically as a function of the tem-
perature, whereas each of the |n| > 0 peaks has a single maximum at a finite temperature.
If @ — o0 the harmonic oscillator results are recovered (cf [5]).

More interesting is the contribution §7 (k, @) of the E > Q region. Aside from an
elastic peak, we obtain the factorized expression

™ (k)= fi(w, Tlgale, k)P (7)

where the nth term contributes only in the frequency range snw, =< w < nw,. The function
f.(w, T) is dominated by the factor exp[—B8Qd *(w)], with d(w)=cos(mne,/2w),
which makes S” vanish as w approaches the top of a band. The factor

2. (w, k) = r dy cos{k![l +d (@) cos(iw‘@ ( —q/z))} wny} (8)

0

contains all the k dependence and has the form of a ‘generalized’ Bessel function. In
agreement with our previous discussion, an increase in k pulls the peak structure
towards lower values of w in each band. The first few bands are shown in figure 2 for
kl=10 and BQ =1. The resonance structure is more impressively exhibited in figure
3, where high values of both the temperature and the transferred wavenumber were

chosen.

A smoothening of the x =0 maximum (to make it more ‘realistic’) would make the
fundamental frequency decrease to zero as E » Q (see figure 1). At higher energies it
would raise again monotonically towards W{o0) =w,. Two values of E would then

w5 Tth,w}

Hnﬂ
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Figure 2. Double parabolic potential: E> Q contribution to S(k, @) plotted as a function
of w for k=10 and BQ = 1. The different terms in (7) have been plotied separately.
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Figure 3. Double parabolic potential: E > contribution to the fundamental band of
S(k, w) for kI =10 and BQ =0.1.

contribute to S{k, w) for each value of w. Although the |w| <3iw, gap would disappear,
there would not be any fundamental modification in the peak structure, which originates
from large- E contributions.
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