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Dynamical structure factor for multiple-well configurations 
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Fakultat fur Physik, Universitat Kanstanr, D-7750 Konstanz, Federal Republic of Germany 

Received 16 July 1990 

Abstract. Some general characteristics of the classical dynamic Structue factor S(k, 01 
corresponding to a one-dimensional multiple-well potential are analysed. A rich peak 
structure is shown to emerge in the frequency domain in the case of unbounded potentials 
that diverge not faster than x2. This effect is intensified at high temperatures or large vsIucs 
of the momentum transfer. 

Double-well potentials are commonly used to model anharmonic motions in ferroelec- 
trics [l,  21 and glasses [3,4]. In glasses, for example, classical motion in  double-well 
potentials has been invoked to explain dynamical properties both at low and intermedi- 
ate temperatures. We are interested here in the latter case, where the potential barrier 
is passed by thermal activation and quantum mechanical effects are negligible. Since 
inelastic neutron scattering is a powerful tool for the investigation of the dynamical 
excitations of these systems, exact analytical calculations of the classical dynamic 
structure factor S ( k ,  w )  for atomic motion in such potentials are of interest. 

It is somewhat surprising that, although the results for the simple harmonic oscillator 
and for various types of diffusive motion are well known [5-81, there is only one 
calculation of S(k,  w )  for Hamiltonian motion in a more general potential. This is the 
work by Iwamatsu and Onodera [9], who treated the case of a quartic potential. They 
used a generalization of the procedure devised by Matsubara [lo] to evaluate the 
dynamical susceptibility S ( w )  for a classical multiple-well one-dimensional problem. 
For the quantum case, on the other hand, there are various approximate calculations 
[ l l ,  121. In particular, we should mention thevast literature associated with the impulse 
approximation ([ l l ]  and see, for example, [13] and references therein). 

In this paper we investigate some interesting, but hitherto unnoticed, properties of 
the classical S(k, U ) ,  and show how they are related to the form of the potential V ( x ) .  
We will illustrate the discussion by presenting explicit results for a double-parabolic 
potential. 

We consider potentials having one or more minima and satisfying the condition 
V(lxl -f m) + m. The constant-energy lines defined by the maxima of V ( x )  divide the 
classically allowed region of the x, E plane into domains corresponding to different 
types of periodic motion. The period in the j t h  domain is given by a single-valued 
function 7 ; ( E ) .  The corresponding frequency is y . ( E )  =2~[7; (E)] - ’ .  As a con- 
sequence of the periodicity, the contribution of every energy in  each domain to the 
intermediate scattering function can be expressed as a Fourier series; taking the Fourier 
transform with respect to the time yields [9,10] 

m 

S ( k , o ) = Z - l x  j “=-m 5 ~ E ~ d P e - U E I F , , , ( E ,  k) l*T , (E)S(w-nWW,(E) ) .  (1) 

Here E,, and E,. are the lower and upper energy limits of the j t h  domain, p = ( k B T ) - ’ ,  
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Z is the partition function 
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Z =I 1'" d E  e-PE T,( E )  
J E,, 

and 

where x ( t )  is the particle displacement at time f in the given potential. The coefficients 
F,.(E) are oscillating functions of the energy. The positions ofthe maxima in IF,,,(E)l* 
are connected with the commensurability of the inverse of the transferred wavenumber 
with the amplitude of the particle oscillation at energy E in domain j .  

Each delta function in ( 1 )  defines a mapping between the internal variable E and 
the external parameter w. The oscillations in Icz(E)12 are then transferred to the o 
domain. Therefore, the properties of S ( k ,  w )  will depend crucially on the form of the 
function %.(E).  Some general features of W,(E) follow easily. 

(a) If V ( x ) - A l x J q  when JxJ+m, then 
W J ( E ~ > ~ u ) - E " 2 ~ " ~  

where the index J indicates the uppermost energy domain, extending up  to E = m and 
iU is the maximum height of the intervening barriers (for definiteness we can choose 
the energy zero at the position of the lowest minimum). This result implies that W, 
( E + m ) + O f o r q < 2 , a n d t h a t  W,(E+co)divergesforq>2. If q = 2 ,  WJ(E)goesto 
the natural oscillation frequency as E --* CO. Similar considerations hold if we consider 
the energy region in the neighbourhood of the potential minima. In  figure 1 we have 
sketched W(E) for symmetric double-well potentials having the three possible types 
of asymptotic power-iaw behaviour (the index j wiii be omitted whenever there is no 
possibility of confusion). 

I 

E 

Figure I .  Sketch of the oscillation frequencies for symmetric double-well polentials. The 
wells are assumed to have a parabolic bottom with a natural frequency w ~ .  They are 
separated by a smooth barrier of height Q. For large 1x1 the potenlial is V(x)-~X~'',  with 
[ a )  q > 2 ,  ( b )  q = 2  and ( e )  q < 2 .  
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(b) Each intervening barrier having a smooth maximum of height E, generates a 
zero in W ( E )  at E = E,. If the maximum is a cusp, there is a discontinuous decrease 
in W ( E )  at the energy of the cusp: when raising the energy beyond the cusp, the 
period is suddenly increased because a larger region becomes available. 

From observation (a) we conclude that, if q S 2 ,  S ( w  - W , ( E ) )  maps an infinite E 
domain onto a finite w range. If q < 2, w = 0 is an accumulation point for the projected 
oscillations in IF,,(€, k ) l .  In the case q = 2  we may write V=fmw;x2 as /xl+m, where 
m Is the mass of the particle. The oscillations then accumulate as o + wo.  At low 
temperatures the Boltzmann factor in ( 1 )  kills the high-energy contributions and the 
oscillations in the dynamic structure factor are not visible. At higher temperatures, the 
oscillations become detectable and a plot of S (  k, w )  as a function of w shows a structure 
of resonances. The same phenomena are observed in the n > 1 bands. The bands will 
in general overlap, but the location of the densely peaked regions is shifted upwards 
with increasing n. Consequently, the superposition of the contributions o i  the diiierent 
bands does not lead to a smoothening out of the peaks. 

In the special case of a purely harmonic motion the whole energy range is mapped 
onto the points w = nuo and the oscillations are undetectable. If q > 2, as in the case 
studied by Iwamatsu and Onodera [9], the infinite E domain is projected onto an 
infinite w range. Consequently, there is not a strong compression of the oscillations 
in the w range and no structure of resonances arises. 

Assuming that V ( x )  is unbounded as 1x1 +CO, two important corollaries follow from 
the preceding discussion. (i) If V(x)<A1xI2  for all 1x1 larger than a certain constant 
M, w = 0 will be an accumulation point for the oscillations in S(k, w ) .  (ii) If V ( x )  > A/x /*  
for all 1x1 larger than M, there will not be an accumulation point for the oscillations. 

From observation (b) it follows that more than one branch, i.e. more than one 

branches are weighted by the Boltzmann factor. This was already remarked in [ 9 ]  for 
the case of the two-well quartic potential. 

Next we consider the dependence of S ( k , w )  on k. Suppose that A,(€)  is the 
amplitude of the motion with energy E in region j and that there is a maximum in 
IF,,(E)IZ when E and k are related by k A , ( E )  = a, a being a numerical constant. Since 
.-,~-, A . i F i  i c  ." " 1 nnn-rlerrpasing ---.-_I... funainn of E, incre.5. in k wi!! gencrz!!y m.2~ that the 
relation k A j ( E )  = n is fulfilled at a lower energy. Thus increasing k will likely pull the 
oscillations of l 5 - ( E ) l 2  towards lower energies and will make the resonances visible 
at lower temperatures. The evolution of the position of the maxima in lF.(E)I* as a 
function of k is easily visualized in the case of the simple harmonic oscillator, for 
which F , ( E ) -  J, [kA(E) ] ,  with J ,  being a Bessel function. 

The O <  q < 2 case is most simply exemplified by choosing V ( x )  = alx l .  The integral 
in (3) is easy to evaluate and S ( k ,  U )  can be expressed in terms of Fresnel functions. 
We can then readily see the emergence of a rich peak structure a t  high T or k in the 
low-lwl region. We will present explicit results in a future publication [14]. 

Let us now discuss a specific example of the q = 2 case. Consider the double- 
parabolic potential 

I , Q ~ . . P  rrf F -Q., mntr;h,.tn t,. QIL ,.,) Fnr o ni.,~n ,.. The mrrrih..tinrr n F t h e  ~ t o - ; r r . . ~  
. " .V I  "1 I, a..", U"..L..""LI I" U,%, Lu, I", " 6 1 " C L L  -. ' I L L  l " l l l l l " Y L L " L L I  "1 ,ur "rll""I 

(4) 
. I ,  v ( x )  =tmwi(ixi - i j 2 .  

There is a single barrier of height Q = fmw:/*  and the frequency is given by 

E < Q  
{:1[1+(2/7r) arcsin(Q/E)"']-' E > Q. 

W (  E )  = 
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The frequency W ( E )  jumps from wo to ton at E = Q and then grows monotonically, 
approaching o = wo as E +a. 

The contribution S'(k, o) of the E < Q regions to the dynamic structure factor is 
given by a superposition of delta function peaks: 

C A  Condar and J Jackle 

S'(k,o)=(4a/00Z) Z d E  e-'€ IJ"[kA(E) ]1*S(o -no , ) .  (6) 

The intensity of the elastic peak decreases monotonically as a function of the tem- 
perature, whereas each of the In1 > 0 peaks has a single maximum at a finite temperature. 
If Q- w the harmonic oscillator results are recovered (cf [SI). 

More interesting is the contribution S' ( k ,  o) of the E > Q region. Aside from an 
elastic peak, we obtain the factorized expression 

n = - m  I," 

S ' ( k , w ) = l f , ( o i  T)Is,(oj k)!*  !7! " 
where the nth term contributes only in the frequency rangefno,s w S noo.  The function 
f*(o, T )  is dominated by the factor e ~ p [ - P Q d - ~ ( w ) ] ,  with d ( o ) =  cos(anwo/2w), 
which makes S' vanish as w approaches the top of a band. The factor 

g . ( w , k ) = ~ ~ d y c o s ( k l [ l + d ~ ' ( w ) c o s  )]  - f l y ]  (8) 

contains all the k dependence and has the form of a 'generalized' Bessel function. In 
agreement with our previous discussion, an increase in k pulls the peak structure 
towards lower values of o in each band. The first few bands are shown in figure 2 for 
k l=  10 and PQ = 1. The resonance structure is more impressively exhibited in figure 
?i where high values of both the temperature and the transferred wavenumber were 
chosen. 

A smoothening of the x = 0 maximum (to make it more 'realistic') would make the 
fundamental frequency decrease to zero as E + Q (see figure 1). At higher energies it 
would raise again monotonically towards W ( m )  = oo. Two values of E would then 

W l W 0  

Figure 2. Double parabolic potential: E >  Q contribution to S(k,  o) plotted as a function 
of w for k / =  IO and pQ= 1. The different terms in (7)  have been plotted separately. 
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Figure 3. Double parabolic potential: E > Q contribution to the fundamental band of 
S ( k , w ) f o r k l = I O a n d P Q = O . I .  

contribute to S ( k ,  o) for each value of o. Although the Io/ <fo, gap would disappear, 
there would not be any fundamental modification in the peak structure, which originates 
from large-E contributions. 
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